Modeling of component lifetime based on accelerated life tests and gas permeation measurements

Gary Van Schooneveld and Don Grant

May 12, 2011

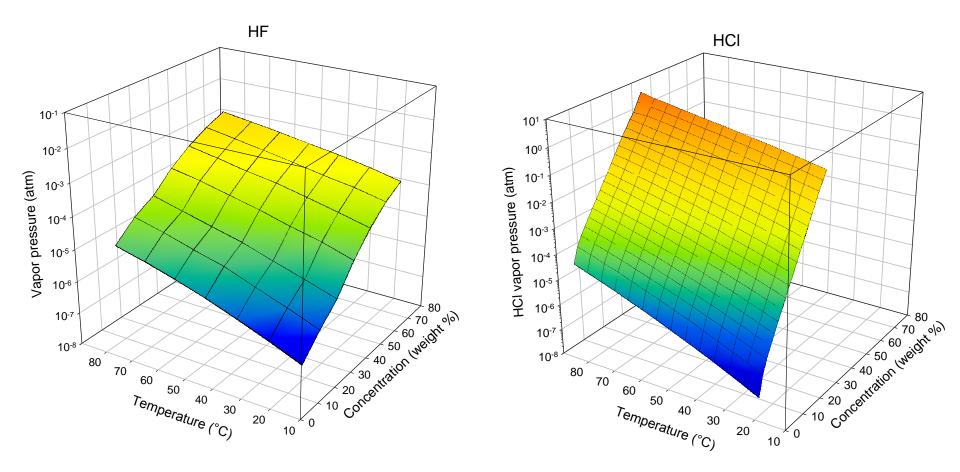
Introduction

- Metallic parts in chemical handling systems are subject to corrosion by acid gases like hydrogen chloride (HCl) and hydrogen fluoride (HF).
 - Examples include springs in valves and magnets in mag drive and maglev pumps
- Polymers, like perfluoroalcoxy (PFA), are often used to isolate these parts from acid gas containing liquids to prevent corrosion.
- Acid gases in these liquids can permeate through polymers and corrode the parts.
- Prior work has been conducted to measurement of HCl and HF permeation rates through polymers and develop a life prediction model based on permeation rates.
- This paper discusses the on-going accelerated life tests of pumps and impellers in HCl.

Outline

- Diffusion theory
- The effect of operating conditions on permeation rate thru PFA
 - Concentration
 - Temperature
 - PFA thickness
- Permeation rates of HCl and HF thru various polymers
- Life testing and accelerated life testing
 - BPS-3 at room temperature
 - BPS-1,3 and 4 elevated temperature testing
 - BSP-3 impeller elevated temperature testing
- Predicted relative lifetimes under different operating conditions
- Summary

Steady-state permeation


$$M = \frac{\mathrm{P}P_{V}A}{T}$$

Where
$$M$$
 = Mass flow rate
 P = Permeability coefficient
 P_V = Gas vapor pressure
 A = surface area available for diffusion
 T = material thickness

Note: The mass flow rate is proportional to the gas vapor pressure; not the acid concentration.

Comparison between vapor pressures of HF and HCl over hydrofluoric and hydrochloric acids

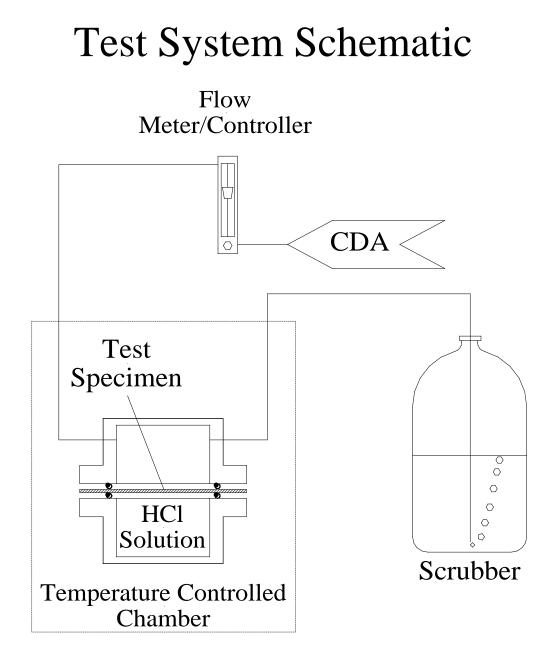
Source: Brosheer at all, *Ind and Eng Chem* 39(3):423-427, 1947 and Hydrofluoric Acid Properites, Honeywell (2002).

Source: JH Perry, <u>Chemical</u> <u>Engineers' Handbook, 4th Edition,</u> McGraw Hill (1963) p 3-61

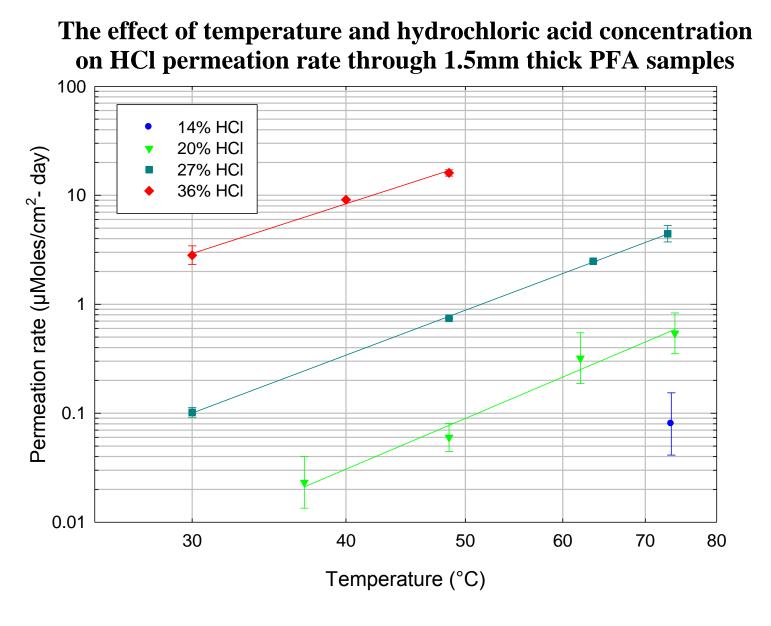
Comparison of HCl and HF vapor pressures

Vapor pressure of HCl over selected hydrochloric acid solutions

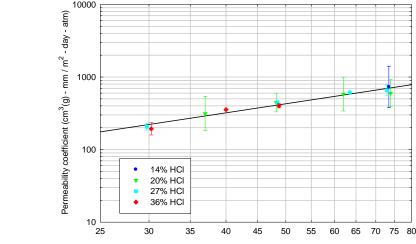
HCl concentration (% by weight)	Temperature (°C)	Vapor pressure (atm)
5	20	5.5 x 10 ⁻⁷
6.3	75	2.1 x 10 ⁻⁴
37	20	0.17
37	40	0.55
32	75	0.66
37	60	1.51

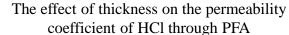

Vapor pressure of HF over selected hydrofluoric acid solutions

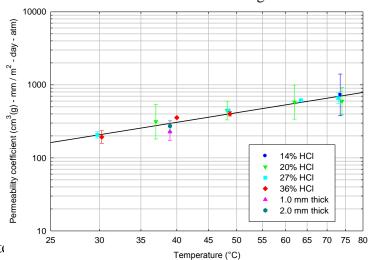
HF concentration	Temperature	Vapor pressure
(% by weight)	(°C)	(atm)
0.5	20	$1.2 \ge 10^{-5}$
5.0	20	7.5 x 10 ⁻⁵
49	20	0.018
49	60	0.15



The effect of vapor pressure, temperature, and thickness on the permeation rates of HCl and HF through PFA



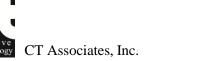

Creative rechnology CT Associates, Inc.


Permeability coefficient

Temperature (°C)

The effect of temperature on the permeability coefficient of HCl through PFA

$$\mathbf{P} = \frac{MT}{P_V A}$$


Where **P** = **Permeability coefficient**

M = Mass flow rate T = material thickness P_V = Gas vapor pressure A = surface area available for diffusion

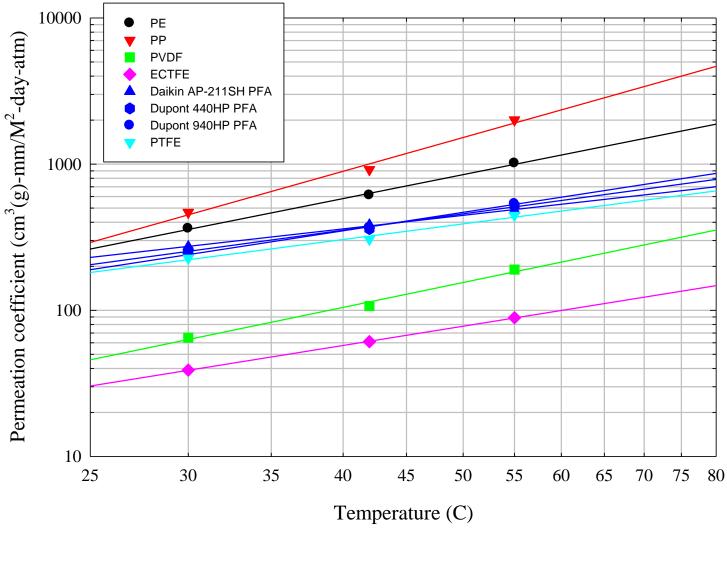
Permeability coefficient units:

Gas volume – thickness Area in contact with gas– Time - Vapor pressure

 $\frac{\text{cm}^3(g) - \text{mm}}{\text{m}^2 - \text{day - atm}}$

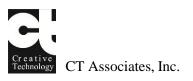
G Van Schooneveld et al (2011), Presente Conference Sponsored by

Permeation of HCl through PFA


- Permeation coefficient
 - Increases with temperature
 - Independent of chemical concentration
 - Independent of thickness
- Permeation rate
 - Is proportional to the acid gas vapor pressure
 - Increases with temperature
 - Is inversely proportional to the coating thickness

Polymer permeability comparison

Permeation coefficient of HCl through different polymers



^{ative} CT Associates, Inc.

Comparison between HCl and HF permeation coefficients

Polymer	Permeability coefficient, cm ³ (g)-mm/M ² -day-atm				
Forymer	HCl	HF			
PE	430	-			
РР	600	4200			
PVDF	75	8800			
ECTFE	45	3600			
PFA	300	2600			
PTFE	250	2700			

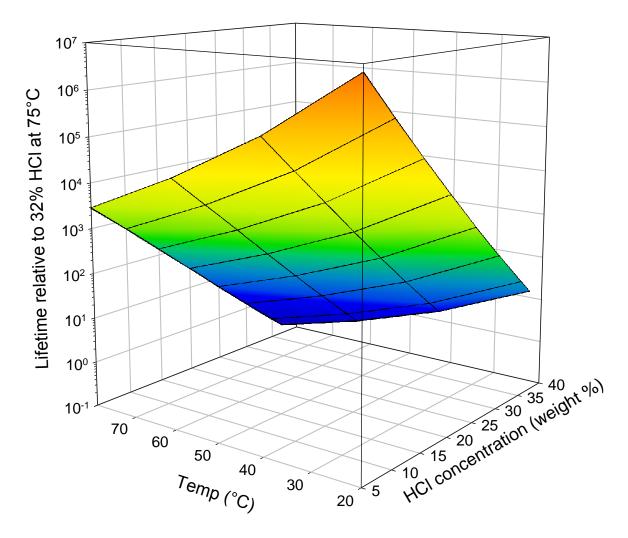
@ 33°C

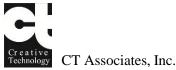
Comparison between HCl and HF permeation rates

Dalamaan	Relative pe	ermeability	Vapor p	ressure	Relative permeation rate		
Polymer	HCl	HCl HF 37% HCl 49% HF		37% HCl	49% HF		
PE	9.6	-	0.44	0.043	4.3	-	
PP	13.3	93	0.44	0.043	5.9	4.0	
PVDF	1.7	196	0.44	0.043	0.76	8.4	
ECTFE	1.0	80	0.44	0.043	0.44	3.4	
PFA	6.7	58	0.44	0.043	3.0	2.5	
PTFE	5.6	60	0.44	0.043	2.5	2.6	

@ 33°C

 $M = \frac{PP_{v}A}{T}$



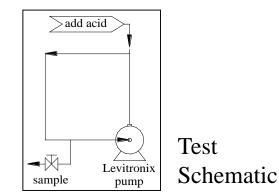

Component lifetime predictions

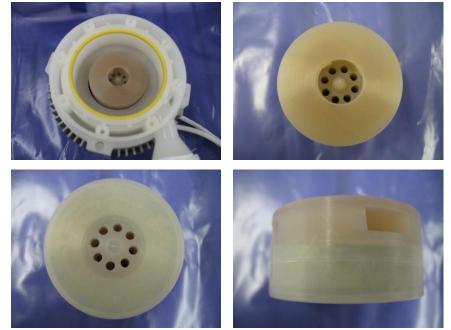
Assumption: Component lifetime is inversely proportional to the rate at which the acid gas reaches the component.

Predicted PFA coated component life based on HCl permeation rate (assumes that failure rate is proportional to permeation rate)

Predicted relative lifetimes of PFA coated components under expected use conditions

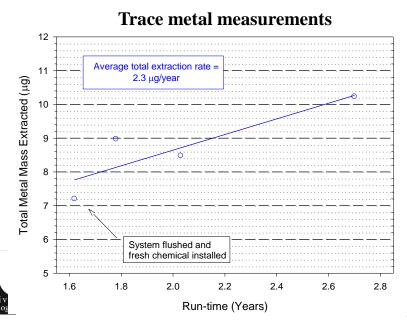
Acid	Concentration, % by weight	Temperature, °C	Relative lifetime	
	6.3	75	3100	
UCI	37	20	22	
HC1	37	40	2.7	
	32	75	1.0	
	0.5	20	40,000	
HF	5	20	6,400	
	49	20	26	


Accelerated life tests in chemical


- Three studies on-going
- BPS-3 pump circulating 35-37% HCl at room temperature
- BPS-4 pump circulating in 30-32% HCl at 75°C.
- Static soak of BPS-3 PFA impellers with two encapsulation thicknesses (1.4 mm and 0.7 mm) in 30-32% HCl at 75°C.

BPS-3 Room Temperature Testing

- PVDF housing
- ECTFE encapsulated magnet
- 35-37% by weight HCl
- Room temperature (18-23°C)
- Pump speed: 400 rpm
- Trace metal samples taken every 6 month
- Visual examination of impeller once a year.
- Operating nearly 8 years without a failure.

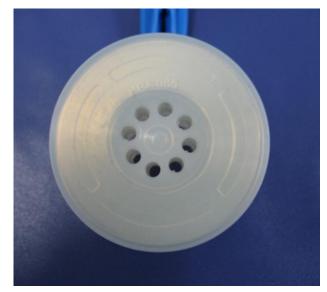


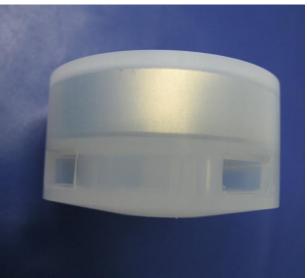
Pump and impeller after 7 years of operation in concentrated HCl

BPS-4 Elevated Temperature Testing

- PTFE pump body
- PFA encapsulated magnet
- Pump speed 4350 rpm
- Outlet pressure -14 ± 2 psi.
- Average HCl concentration 31.3% by weight
- Average operating temperature 72.6°C
- Trace metal samples taken every 6 months
- Pump has running time of more than 4 years without failure.

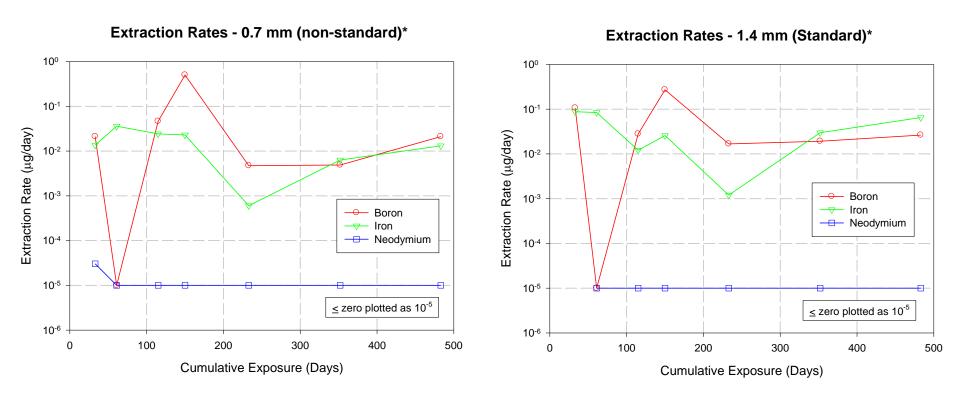
Test Apparatus

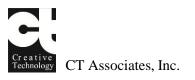

Exposure Time Equivalents


Operating Conditions	Run-time, Years
As Tested (30-32% HCI @ ~70°C)	4.1
37% HCI @ 20°C	64
6.3%, 75°C	9000

1), Presented at the CMP and Ultrapure ponsored by Levitronix.

Impeller Testing in Hot HCl


- Static soak of 6 impellers.
- Two PFA encapsulation thicknesses (3 each).
 - 1.4 mm (standard)
 - 0.7 mm (non-standard)
- Average HCl concentration 31.4% by weight.
- Assay measured at beginning and end of each conditioning period.
- Average conditioning temperature 74.8°C.
- Trace metal samples taken every 3 months including blank.
- Photo examination every 3 months.
- Dimensional changes (diameter) measured at beginning of test and at 16 months.
- Impellers run at Levitronix in a BPS-3 after 16 months exposure.



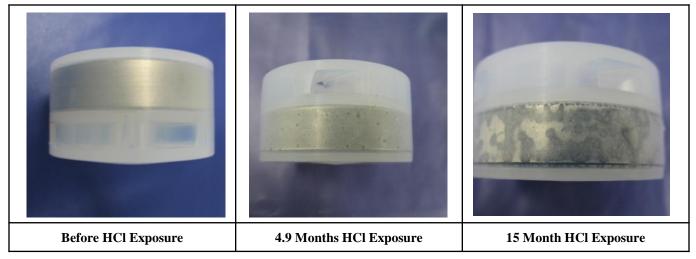
Trace Metal Extraction

* Blank subtracted

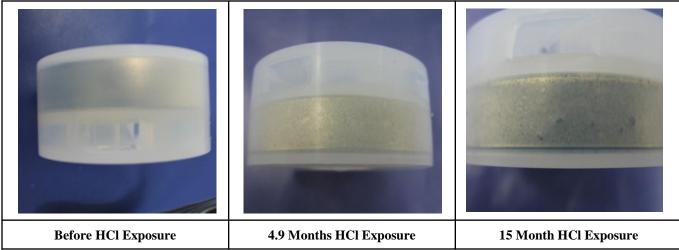
Are these extraction rates significant?

Trace Metal Extraction

- Assume:
 - Recirculation system with a 100 liter tank.
 - Chemical usage rate of 100 liters per day.
 - Worst case extraction rate of 0.02 ug/day iron (0.06 ug/day÷3 impellers) from prior figure.


Change in iron concentration in the chemical would be 0.0002 ppb.

(0.02 ug/day÷100 liters/day)



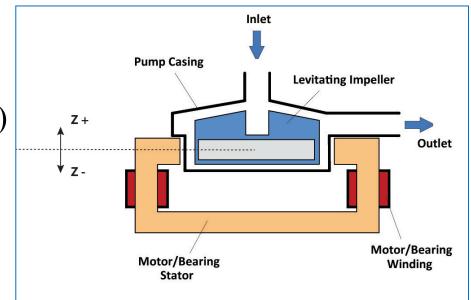
Visual Changes

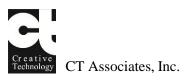
0.7 mm impeller (non-standard)

1.4 mm impeller (standard)

Dimensional Changes

			eter as eived	Diameter after HCl Exposure		
Description	ID	Mean (mm)	SD (mm)	Mean (mm)	SD (mm)	Diameter Change (mm)
	HBA 077	51.28	0.025	51.73	0.074	0.45
Standard Impeller	GGQ 177	51.24	0.015	51.67	0.136	0.43
(51.4 mm)	GGQ 170	51.24	0.040	51.67	0.084	0.43
	Average	51.25	0.03	51.69	0.10	0.44
	HBA 085	49.99	0.031	50.49	0.157	0.50
Special Impeller (50.0 mm)	HBA 398	49.89	0.050	50.44	0.071	0.55
	HBA 320	50.04	0.053	 50.70	0.118	0.66
	Average	49.98	0.04	50.54	0.12	0.57


Levitronix design approach for contamination prevention


- Pumps are designed to sense and respond to changes in impeller size.
- This provides an early indication of impeller swelling due to magnet corrosion.
- These accelerated life tests were designed to determine:
 - when the impeller size changes enough for the pump to sense and respond to impeller swelling (useful service life) and
 - if or when metal ions are released from the impeller (safe life)
- Goal is to have a safe life well beyond the useful service life of the impeller.

Levitronix "in-pump" testing

- Impellers were returned to Levitronix for testing in a BPS-3 pump.
- 3 standard thickness impellers were tested.
- Pumps were operated in water at:
 - 500 rpm, 0 lpm
 - 6000 rpm, 43 lpm
 - 6000 rpm, 79 lpm
- "Z" positions (axial position) were measured.

In-pump test results

			Production	n impellers ".		nditioned im "Z" position			
Pump speed (rpm)	Flow Rate (lpm)	# of Samples	Mean (mm)	Standard Deviation (mm)	Min (mm)	Max (mm)	Mean (mm)	Min (mm)	Max (mm)
500	0	88	0.19	0.057	0.07	0.39	1.98	1.74	2.19
6000	43	88	1.71	0.094	1.49	1.94	4.40	3.69	4.92
6000	79	88	5.78	0.197	5.3	6.16	7.04	3.38	8.23

Note: "Z" position limit is -2.5 mm to +7.0 mm.

Predicted lifetimes based on pumps and impellers currently under test

Pump Model	Test Speed (rpm)	Run Time (Days)	Average Temp (°C)	Average HCl Assay (wt%)	Service Life @ 37%/20°C (Years)	Safe Life @ 37%/20°C (Years)	Service Life @ 6.3%/75°C (Years)	Safe Life @ 6.3%/75°C (Years)
BPS 3	400	2874	RT	35-37	> 7.8	> 7.8	> 1100	> 1100
BPS 1*	4500	546	70.0	28.7	10.5	> 12.0	1,500	> 1,700
BPS 3*	4500	590	74.4	29.9	15.5	> 19.9	2,200	> 2,800
BPS 4	4370	1478	72.6	31.2	> 64	> 64	> 9000	> 9000
BPS 3 Impellers	0	546	74.8	31.4	≤26	> 29	≤ 3600	> 4000

* Test Complete

Summary

- Previous work has shown permeation rates of HCl and HF through PFA to:
 - be proportional to the HCl or HF vapor pressure
 - be inversely proportional to the coating thickness
 - increase with temperature
- The permeation rates of HCl through different polymers is not a good indicator for HF permeation rates through the same polymers (and vice versa).
- A model has been developed to predict component failure rate resulting from HCl and HF acid gas permeation.
- The model, combined with on-going life test data, predicts pump lifetimes with PFA-coated impellers to be >10 years under challenging use conditions.
- No failures resulting in chemical contamination have yet to be observed in any of the exposure tests.
- In-pump impeller position can be used to signal impeller replacement point.

References

- Grant DC (2008). "The Effect of Exposure Conditions on Component Life in HCl solutions," presented at the 2008 Ultra Pure Fluid and Wafer Cleaning Conference, sponsored by Levitronix.
- Grant DC and D Carrieri (2008). "The effect of HCl permeation through PFA on expected component life," *Semiconductor Fabtech*, 37th Edition, pp 101-105.
- Van Schooneveld G, DC Grant, D Carrieri, D Chilcote and M Litchy (2009). "Modeling of component life based on accelerated acid gas permeation measurements," presented at the 2009 Ultra Pure Fluid and Wafer Cleaning Conference, sponsored by Levitronix.

