SLURRY FORMULATION OPTIONS

CHALLENGES FOR DEFECT REDUCTION IN CU,Ta/TaN AND Ru PLANARIZATION

S. V. Babu

Center for Advanced Materials Processing, Clarkson University

(www.clarkson.edu/camp)

Clarkson UNIVERSITY <u>defy</u> convention,

Acknowledgments

- IBM, through SRC, and ARO for funding this research
- My students, C. Surisetty and S.Janjam
- My colleague Prof. Dip Roy
- Don Canaperi and his IBM team

Outline

- Introduction
- New Slurry options for Cu and Ta CMP
 - Defects during Cu/barrier polishing
 - Patterned wafer polish results
 - Post-polish surface analysis
- New barrier materials (Ru-based)
 - Slurry options
 - Galvanic corrosion

• Conclusions

Factors Affecting CMP Chemical Mechanical Planarization Tool Performance Consumable Performance Pad Performance Slurry Performance Process Conditions Abrasive components Chemical components Oxidizing agents \checkmark ✓ Single abrasives ✓ Passivating agents ✓ Mixed or composite abrasives ✓ Surfactants **Other additives**

- Particles → scratches and related defects, residues, etc.
- Chemicals → corrosion, etching, nonplanarity, nonor inadequate selectivity, residues, etc.
- Combined → Dishing (pad also plays a role), erosion, etc.

Defectivity vs. Slurry Design

More mechanical slurries

Higher Defects

- . scratches
- slurry residues

Higher planarity

Higher friction

Higher down force to

Maintain removal

More chemical slurries

- slurry residuals and precipitates
 chemically driven scratches
 clearing issues
 Cu surface protection
 - more critical
- corrosion risk
- Dendrties
- unstable process
- copper etching/corrosion pits, etc/

Barrier Slurry Requirements

- Barrier thickness is quite small → Rate not important
- Need to remove all the stop layer and perhaps some of the underlying dielectric
- Appropriate selectivity and achieving uniformity are critical
- Controlled dishing and erosion
- No galvanic corrosion
- Of course, no "damage" to the dielectric layer pH has a strong influence

Cu loss due to galvanic corrosion

Ref: Zhigang song et al., IEEE transaction on device and materials reliability, Vol 5, (2005)

EHT = 5.00 kV

WD = 3 mm

Nand delay

Date 15 Dec 2002

8

Barrier Slurry Selection

- C. Surisetty, P. Goonetilleke , D. Roy and S.V. Babu, J. Electrochem. Soc. 155, H971 (2008)
- C. Surisetty, B.C. Peethala, D. Roy and S.V. Babu, Electrochem. & Solid State Lett. 13 H244 (2010)
- C. Surisetty, PhD thesis, 2009 (Clarkson University)
- Sathish Janjam, PhD Thesis 2008 (Clarkson University)

Selection of slurry systems

Cu Slurries

- + 0.021M Oxalic acid + 5wt% H_2O_2 + 4mM DBSA + 3wt% SiO_2 @ pH-3 (Cu I)
- 1wt% glycine + 0.021M Oxalic acid + 5wt% H_2O_2 + 3.5mM DBSA + 3wt% SiO₂ @ pH 3 (Cu II)

Barrier Slurries

- $0.065M K_2SO_4 + 1wt\% H_2O_2 + 8wt\% SiO_2 @ pH 4 (Ta I)$
- 0.065M K₂SO₄ + 8wt% SiO₂ @ pH 4 (Ta II)

Dishing – ITRS requirements vs results

Year of Production	$\begin{array}{c} 200 \\ 7 \end{array}$	200 8	200 9	$201 \\ 0$	$\begin{array}{c} 201 \\ 1 \end{array}$	$\begin{array}{c} 201\\2\end{array}$	201 3	$\begin{array}{c} 201 \\ 4 \end{array}$	$\begin{array}{c} 201 \\ 5 \end{array}$
Technology Node	$\begin{array}{c} hp\\ 65\end{array}$			$\begin{array}{c} hp\\ 45\end{array}$			hp 32		
Cu thinning of global wiring due to dishing (nm), 100 µm wide feature	24	20	19	16	14	14	12	11	10
Dishing Performance			Commercially available Slurries			Obtained in this work			
200 µm wide features			30-50 nm			10-15 nm ¹¹			

POLISHING CONDITIONS

Wafer size	300mm (12")
Tool	AMAT LK-Chamber
Slurry flow rate	300 ml/min
Pressure	2.2 psi
Platen / Head speed	102 / 100 rpm
Silica	Colloidal silica (~ 35nm)
Pad	Hard / Soft
Hard pad Conditioning type	In-situ with 5lbf and head speed of 108 rpm
Soft pad Conditioning type	Ex-situ with 2lbf and platen/head speed of 101/108 rpm

PATTERN DESCRIPTION

Box 2: 1 um line, 10 um space 9% pattern factor

Box 3: 0.8 um line, 0.2 um space 80% pattern factor

Box 4: 0.1 um line, 0.2 um space 33% pattern factor

Box 5: 1.8 um line, 0.2 um space 90% pattern factor Box 6: Minimum line, minimum space 50nm line/space; 50% pat₁grn factor

Dishing comparison – Profilometry

SEM Inspection of wafers polished with various slurries

Commercial **Cu slurry**

Window 1 - C-ABWMix

Cu – I slurry

Cu – II slurry

Window 1 - C-ABWMix

Mindow 1 - C-ABWMiy

Window 1 - C-ABWMix0

Tool: Brightfield Defect Detector

Performance comparison of 2 nd step slurries						
Parameter	Ta - I slurry (K2SO4-H2O2)	$Ta - II slurry (K_2SO_4)$				
Dishing Improvement for 200 x 200 µm features	20 – 30 nm	Not measurable				
Optical Profilometry	Good	Cu was damaged				
SEM Inspection	Lower defects compared to commercial slurry	N/A				

Bulk Cu for these wafers was polished with commercial Cu slurry.

16

New Barrier materials (Ru-based) -Slurry options

- Barrier thickness is ~ 5 nm or less for < 45 nm technology node
- Higher resistivity
- A Cu seed layer is required for electroplating Cu on Ta/TaN
- It is increasingly difficult to deposit Cu seed/Ta/TaN trilayer within the spatial limits

Alternative barrier requirements

•Need diffusion barriers with stability over wide (300 – 700 C) temperature range

- Conductive platform for direct electroplating of Cu, eliminating the need for a seed layer
- •Single layer to decrease the complexity in the process

Alternative to Ta/TaN

Some Advantages of Ruthenium

Lower (~7 μΩ cm) resistivity compared to Ta (~14 μΩ cm) and TaN (~200μΩ cm)
Good adhesion to Cu – improves electromigration resistance
High thermal stability
Direct electrodeposition of Cu

Ru barrier

Drawback with only **Ru** barrier

• Ru due to its columnar structure, may not be a good diffusion barrier below 10 nm thickness

Incorporation of materials into Ru or Ru stack

- Ru/TaN was shown to have improved barrier properties
- Carbon incorporation into Ru stabilizes the amorphous structure and thereby improves barrier properties
- Similarly N, P, B.. incorporations have been investigated for improving barrier performance

Replacement of W contacts with Cu

Problems for < 32 nm technology node with W:

- Large resistance of W(5.28 $\mu\Omega$ cm)
- Large resistance due to poor gap fill

Alternative:

- Cu (1.6 $\mu\Omega$ cm); but needs a robust diffusion barrier to block Cu diffusion
- Possible options for barrier: Ru/TaN, RuC, RuN.....

Comparison of W and Cu contacts

b) Cu contact

24

Line -200 nm depth and width of 35 nm, Cu contact on CVD Ru/Ta

Ref: S. C. Seo et al., Electrochemical and Solid-State Letters, 14 (5) H187-H190 (2011)

Comparison of resistance

25

Ref: S. C. Seo et al., Electrochemical and Solid-State Letters, 14 (5) H187-H190 (2011)

Challenges for Ru CMP

- Ru, a noble metal, has a very low polish rate in typical barrier slurries (needs oxidizer for higher RRs)
- Can induce galvanic corrosion in Cu due to difference in corrosion potentials
- Selective removal of Cu, hardmask (SiO2), and low-k (SiCOH) is required

26

Ru CMP - Early Work

Oxidizer	рН	RR (nm/mi n)	Pressure (psi)	Problem	Ref
Ceric ammoniu m nitrate (CAN) + HNO ₃	1	40	1	Formation of RuO ₄ and insolubility of CAN above pH 2	Lee et al (2004)
Hydrogen peroxide	3 -10	10	3	High silica wt% (30)	Vishwas (2005)
Sodium periodate	4 -10	130 (pH 6)	4	Na contamination	Park et al (2009) 27

New KIO₄-based slurry for Ru CMP

• Some targets

- Ru Removal rate > 50 nm/min
- Eliminate formation of RuO₄ (toxic)
- Adequate removal rate selectivities over Cu and ${\rm SiO}_2$
- Minimize defects and galvanic corrosion

B. C. Peethala and S. V. Babu, J. Electrochem. Soc 158, H271 (2011)

Concentration and pH of KIO₄

• Solubility at 20°C is 0.018 M, increased by

adding KOH

• 0.015 M concentration was chosen for an

initial study

• Toxic RuO₄ is reported to form in the acidic

region (pH $\leq \sim$ 7), therefore pH 9 was chosen

Effect of Abrasives

Enhancement in the Ru RRs

B. C. Peethala and S. V. Babu, J. Electrochem. Soc (2011)

 $\mathbf{31}$

Effect of ionic strength

32

Proposed reaction mechanism

 $\circ pH \leq 7$

 $Ru + KIO_4 \rightarrow RuO_4(toxic) + I^- + K^+$

 $\circ pH \ge 8$

 $Ru + KIO_{4} + 2OH^{-} \rightarrow RuO_{4}^{-} + H_{2}O + \frac{1}{2}O_{2} + I^{-} + K^{+}$ $4RuO_{4}^{-} + 4OH^{-} \rightarrow 4RuO_{4}^{2-} + 2H_{2}O + O_{2}$

Galvanic Corrosion Analysis

Galvanic corrosion issue with Cu

Combination of inhibitors (7 mM AA + 5 mM BTA)

B. C. Peethala et al., Electrochem. Solid-State Lett. July 2011(DOI: 10.1149/1.3589308)

RRs with and without inhibitors

Ref: B. C. Peethala et al., Electrochem. Solid-State Lett. July 2011

Summary

- Slurry selection can severely impact defect control
- Barrier Slurry is becoming more critical
- New barrier materials (Ru and alloys) impose additional challenges
- Additives that can minimize the possibility of galvanic corrosion of Cu during Ru polishing have been identified.
- Mixed oxidizer slurries without BTA and sulfate-based barrier³⁸ slurries are attractive