Better, faster, cheaper: Technology innovation to overcome Gene Therapy manufacturing challenges

Keen Chung Ph.D.

Associate Director,

Advanced Bioprocess Applications

What problem are we solving?

Process improvements needed in Gene Therapy manufacturing

Therapy	Dosage/ patient	Doses/L bioreactor	Mfg cost (\$/dose)
mAb	1 g	3-5	<\$100
AAV	1E15 VG	~0.1	>\$10,000
Lentivirus	1E10 TU	~0.5	>\$5,000

All data shown as examples only

Increase Doses / \$ / h from Process Intensification

Process intensification strategies to meet demand for viral vectors

Do MORE with LESS MONEY, TIME, SPACE, EQUIPMENT, CONSUMABLES...

KrosFlo® TFDF® Technology

Enables upstream process intensification for viral vectors

TF + DF = TFDF®

- Unites tangential flow (TF) and depth filtration (DF)
- Increase cell density (continuous feed/fresh media)
- Single-use, gamma-irradiated, closed
- Scalable from 2 L to 2000 L
- Small manufacturing footprint

TFDF run in action

TFDF-intensified Lentiviral vector production

Transient LV production at 2L scale from batch and TFDF-intensified cell cultures

Materials and methods

- BioBLU® 3c single-use vessels with macrosparger and two pitched blade impellers (Eppendorf)
- Culture conditions: 200 rpm agitation, 37° C, pH at 7.2 ± 0.2 controlled with CO₂
- Dissolved oxygen (DO) strategy: 50% air saturation, supplemented using 3-gas auto mixture of air, O₂, and CO₂
- Total constant gas flow rate: 0.1-0.3 L/min
- Intensification starts ~3 X 10⁶ cells/mL viable cell density (VCD)
 - KrosFlo® TFDF® Lab System (Repligen) equipped with a TFDF® -30 ProConnex® TFDF® Flow Path (30 cm²)
 - 0.5 L/min cross flow
 - Perfusion rate: 1 vessel volume per day (vvd)

LV production phase

- VCD at transfection:
 - 3 X 10⁶ cells/mL for batch

TFDF intensifies VCD at transfection with identical viability to batch

TFDF-Intensified lentivirus transient production

>80x Lentivirus production with KrosFlo® TFDF® Technology

Stable LV production at 2L scale from batch and TFDF-intensified cell cultures

Materials and methods

- BioBLU® 3c single-use vessels with macrosparger and two pitched blade impellers (Eppendorf)
- Culture conditions: 200 rpm agitation, 37° C, pH at 7.2 ± 0.2 controlled with CO₂
- Dissolved oxygen (DO) strategy: 50% air saturation, supplemented using 3-gas auto mixture of air, O₂, and CO₂.
- Total constant gas flow rate: 0.1-0.3 L/min
- Intensification starts ~3 X 10⁶ cells/mL viable cell density (VCD)
 - KrosFlo® TFDF® Lab System (Repligen) equipped with a TFDF® -30 ProConnex® TFDF® Flow Path (30 cm²)
 - Cross flow 0.5 L/min
 - Perfusion rate: 1 vessel volume per day (vvd)

Cell growth phase

Batch cell culture

LV production phase

- VCD at induction:
 - 3 X 10⁶ cells/mL for batch
 - 9 X 10⁶ cells/mL for TFDF-intensified

TFDF based stable cell line culture compared to batch

TFDF intensified LV stable production

Stable LV production at 10L scale from 2L scale TFDF-intensified cell cultures

Materials and methods

- BioBLU® 3c and 10c single-use vessels with macrosparger and two pitched blade impellers (Eppendorf)
- Culture conditions: 200 rpm agitation, 37° C, pH at 7.2 ± 0.2 controlled with CO_2
- Dissolved oxygen (DO) strategy: 50% air saturation, supplemented using 3-gas auto mixture of air, O₂, and CO₂.
- Total constant gas flow rate: 0.1-0.3 L/min
- Intensification starts ~3 X 10⁶ cells/mL viable cell density (VCD)
 - KrosFlo® TFDF® Lab System (Repligen) equipped with a TFDF® -30 (30 cm², 2L bioreactor) or TFDF® -150 (150 cm², 10L bioreactor) ProConnex® TFDF® Flow Path
 - Cross flow 0.5 L/min
 - Perfusion rate: 1 vessel volume per day (vvd)
- VCD at induction:
 - 9 X 10⁶ cells/mL for TFDF-2L
 - 9 X 10⁶ cells/mL for TFDF-10L

TFDF based high VCD induction at 10L large scale

Scale-up from 2 to 10L bioreactor

TFDF scale up LV production with stable cell line

Scale-up from 2 to 10L bioreactor

~54 doses from 10L bioreactor TFDFintensified cell culture

TFDF-intensified AAV viral vector production

Understanding the importance of continuous perfusion for high VCD transfection

Perfusion-like shake flask experiment

- Batch:
 - Low VCD transfection 3E6 cells/mL
- · Perfusion-like
 - High VCD transfection 9E6 cells/mL
 - Daily CMC to mimic perfusion

The importance of continuous perfusion for high VCD transfection

AAV9 production SF data

Conclusion: Continuous perfusion post high VCD transfection is necessary for increased viral production yields.

Transient AAV production at 2L scale from batch and TFDF-intensified cell cultures

Materials and methods

- BioBLU® 3c single-use vessels with macrosparger and two pitched blade impellers (Eppendorf)
- Culture conditions: 200 rpm agitation, 37° C, pH at 7.2 ± 0.2 controlled with CO₂
- Dissolved oxygen (DO) strategy: 50% air saturation, supplemented using 3-gas auto mixture of air, O₂, and CO₂.
- Total constant gas flow rate: 0.1-0.3 L/min
- Intensification starts ~3 X 10⁶ cells/mL viable cell density (VCD)
 - KrosFlo® TFDF® Lab System (Repligen) equipped with a TFDF® -30 ProConnex® TFDF® Flow Path (30 cm²)
 - 0.5 L/min cross flow
 - Perfusion rate: 1 vessel volume per day (vvd)

Batch cell culture

AVV production phase

- VCD at transfection:
 - 3 X 10⁶ cells/mL for batch

9 X 10⁶ cells/mL for TFDF-intensified

TFDF based AAV intensified production

TFDF intensification improves AAV production and specific productivity (qP)

AAV9 production at 10L scale from 2L sclae TFDF-intensified cell cultures

Materials and methods

Bioreactor, culture and production conditions

- BioBLU® 3c and 10c single-use vessels with macrosparger and two pitched blade impellers (Eppendorf)
- Culture conditions: 200 rpm agitation, 37° C, pH at 7.2 ± 0.2 controlled with CO₂
- Dissolved oxygen (DO) strategy: 50% air saturation, supplemented using 3-gas auto mixture of air, O₂, and CO₂
- Total constant gas flow rate: 0.1-0.3 L/min
- Intensification starts ~3 X 10⁶ cells/mL viable cell density (VCD)
 - KrosFlo® TFDF® Lab System (Repligen) equipped with a TFDF® -30 (30 cm², 2L bioreactor) or TFDF[®] -150 30 (150 cm², 10L bioreactor) ProConnex® TFDF® Flow Path
 - Cross flow 0.5 L/min
 - Perfusion rate: 1 vessel volume per day (vvd)
- VCD at transfection:
 - 9 X 10⁶ cells/mL for TFDF-2L 2X runs

TFDF scale up AAV9 transient transfection production

2L to 10 L scale up

Conclusion

LV: Substantial increased LV production from TFDF-intensified process □ > 80X production in transient mode, >15 X production from stable cell line ☐ Enabled continuous LV cold harvest to prevent virus inactivation ☐ Demonstrated 10L perfusion run enable ~54 doses production (equivalent close to a 200L batch production) for CAR-T application AAV: Substantial increased AAV production from TFDF-intensified process □ >3-8X AAV transient transfection production ☐ Continuous perfusion is critical to AAV intensification ☐ Demonstrated successful scale up 10L perfusion run TFDF based intensification as a solution to provide: ☐ Better: high-quality production yield Simplified and smaller footprint process ☐ Faster and cheaper:

- Shorten timeline to market
- * Reduce consumables and scale ups to save time and cost

Thank you!

kchung@repligen.com

